Universal separable metrizable spaces of given cohomological dimension
نویسندگان
چکیده
منابع مشابه
Continuity in Separable Metrizable and Lindelöf Spaces
Given a map T : X → X on a set X we examine under what conditions there is a separable metrizable or an hereditarily Lindelöf or a Lindelöf topology on X with respect to which T is a continuous map. For separable metrizable and hereditarily Lindelöf, it turns out that there is a such a topology precisely when the cardinality ofX is no greater than the cardinality of the continuum. We go onto pr...
متن کاملContinuity in Separable Metrizable and Lindelöf Spaces
Given a map T : X → X on a set X we examine under what conditions there is a separable metrizable or an hereditarily Lindelöf or a Lindelöf topology on X with respect to which T is a continuous map. For separable metrizable and hereditarily Lindelöf, it turns out that there is such a topology precisely when the cardinality of X is no greater than c, the cardinality of the continuum. We go on to...
متن کاملOn D-dimension of metrizable spaces*
For every cardinal τ and every ordinal α, we construct a metrizable space Mα(τ) and a strongly countable-dimensional compact space Zα(τ) of weight τ such that D(Mα(τ)) ≤ α, D(Zα(τ)) ≤ α and each metrizable space X of weight τ such that D(X) ≤ α is homeomorphic to a subspace of Mα(τ) and to a subspace of Zα+1(τ).
متن کاملCohomological Dimension Theory of Compact Metric Spaces
0. Introduction 1 1. General properties of the cohomological dimension 2 2. Bockstein theory 6 3. Cohomological dimension of Cartesian product 10 4. Dimension type algebra 15 5. Realization theorem 19 6. Test spaces 24 7. Infinite-dimensional compacta of finite cohomological dimension 28 8. Resolution theorems 33 9. Resolutions preserving cohomological dimensions 41 10. Imbedding and approximat...
متن کاملCohomological Dimension of Markov Compacta
We rephrase Gromov’s definition of Markov compacta, introduce a subclass of Markov compacta defined by one building block and study cohomological dimensions of these compacta. We show that for a Markov compactum X, dimZ(p) X = dimQ X for all but finitely many primes p where Z(p) is the localization of Z at p. We construct Markov compacta of arbitrarily large dimension having dimQ X = 1 as well ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 1995
ISSN: 0166-8641
DOI: 10.1016/0166-8641(94)00036-3